Sioux Falls Zoologists

"Persistence and determination alone are omnipotent!"

The mirror test is an experiment developed in 1970 by psychologist Gordon Gallup Jr. to determine whether an animal possesses the ability to recognize itself in a mirror. It is the primary indicator of self-awareness in non-human animals and marks entrance to the mirror stage by human children in developmental psychology. Animals that pass the mirror test are: Humans older than 18 mo, Chimpanzees, Bonobos, Orangutans, Gorillas, Bottlenose Dolphins, Orcas (Killer Whales), Elephants, and European Magpies. Others showing signs of self-awareness are Pigs, some Gibbons, Rhesus Macaques, Capuchin Monkeys, some Corvids (Crows & Ravens) and Pigeons w/training. (Sorry Kitty!)

Sioux Falls Zoologists endorse Bees: Tales from the Hive for showing
us the complex lives of these amazing little creatures.
How the bee colony works and bees work together.

Bees
Tales from the Hive

Bees: Tales from the Hive (2007) -54 minutes
Bees: Tales from the Hive at Amazon.com

Amazingly up-close footage filmed with specially developed macro lenses brings you the most intimate--and most spectacular--portrayal of a working bee colony ever filmed. It's not frightening--it's fascinating. See things you never imagined. Hear things only bees hear. Discover new-found facts about the strange and complex life of bees.

Have you ever seen the high-speed mid-air "wedding flight" of a drone and his queen? Do you know how a bee colony defends itself from honey-loving bears? Did you know it takes nectar from 10 million flowers to create a single liter of honey? No wonder they're called worker bees! Bees: Tales from the Hive exposes a bee colony's secret world - detailing such rarely-seen events as the life-or-death battle between a pair of rival queens, a bee eater's attack on the hive, and a scout bee's mysterious dance that shares special "nectar directions" with the rest of the hive.

9-6-17 Pollen hitches a ride on bees in all the right spots
Pollen hitches a ride on bees in all the right spots
Hard-to-groom zones line up with where flower reproductive parts touch the insects. After bees groom pollen off their bodies, there’s still some left over. These overlooked areas correspond to places where flowers’ reproductive parts come in contact with the bees, a new study shows. Bee bodies may be built just right to help pollen hitch a ride between flowers. For the first time, scientists have identified where and how much pollen is left behind on bees’ bodies after the insects groom themselves. These residual patches of pollen align with spots on bees’ bodies that touch flowers’ pollen-collecting reproductive parts, researchers report online September 6 in PLOS ONE. Typically, when honeybees and bumblebees visit flowers for nectar, they brush much of the pollen that powders their bodies into pocketlike structures on their legs to carry home for bee larvae to eat. In fact, bees are so good at stashing pollen that less than 4 percent of a flower’s pollen grains may reach the pollen-receiving parts of a second flower of the same species. Given bees’ pollen-hoarding prowess, researchers wondered how they came to play such a significant role in plant reproduction. So biologist Petra Wester and colleagues put buff-tailed bumblebees (Bombus terrestris) and European honeybees (Apis mellifera) into jars containing pollen grains. As the bees whizzed around, they stirred up the pollen, evenly coating themselves in just a few minutes. When placed in clean jars, the insects groomed themselves. Even after a half hour of grooming, the insects still had pollen caked on some areas of their bodies, including the tops of their heads, thoraxes and abdomens.

9-1-17 Bee larvae fed beebread have no chance of becoming queen
Bee larvae fed beebread have no chance of becoming queen
Whether a honeybee larva becomes a queen or a worker is down to the food it is given – and the amount of plant RNA in it. A simple meal is all that’s needed to determine the fate of a honeybee larva. It turns out that fragments of genetic material from flowers in their food control the bees’ destinies. When female larvae are fed royal jelly, which is secreted by other bees, they develop into large-bodied, fertile queens. But most larvae eat beebread, a mixture of pollen and nectar. These larvae develop into smaller, sterile worker bees. Xi Chen at Nanjing University in China and colleagues have now found that beebread contains lots of small RNA molecules called microRNAs. These regulate the expression of genes, and in plants they help regulate essential processes like making leaves and flowers. “Plants utilise certain miRNAs to influence the size, morphology, colour and development of flowers,” says Chen. “Such characteristics of flowers guide [honeybees] in pollen collection.” As a result, a lot of these miRNAs end up in beebread, where larvae eat them. The researchers collected pollen, honey, royal jelly and beebread from hives and measured their miRNA levels. They found that beebread and pollen had much higher concentrations of plant miRNAs than royal jelly. The team then reared bee larvae in the laboratory, feeding them a beebread mimic — a lab diet enriched with the same miRNAs as in pollen, at the same amounts. Larvae grown with miRNAs ended up as worker bees, with reduced weight and size, and smaller ovaries.

8-4-17 Bees are first insects shown to understand the concept of zero
Bees are first insects shown to understand the concept of zero
Zero is not an easy idea to grasp, even for young humans – but experiments suggest bees might be up to the challenge. Bees seem to understand the idea of zero – the first invertebrate shown to do so. When the insects were encouraged to fly towards a platform carrying fewer shapes than another one, they apparently recognised “no shapes” as a smaller value than “some shapes”. Zero is not an easy concept to comprehend, even for us. Young children learn the number zero later than other numbers, and often have trouble identifying whether it is less than or more than 1. Apart from ourselves, some other animals grasp the concept of zero, though. Chimpanzees and monkeys, for instance, have been able to consider zero as a quantity when taught. With their tiny brains, bees may seem an unlikely candidate to join the zero club. But they have surprisingly well-developed number skills: a previous study found that they can count to 4. To see whether honeybees are able to understand zero, Scarlett Howard at RMIT University in Melbourne and her colleagues first trained bees to differentiate between two numbers. They set up two platforms, each with between one and four shapes on it.

11-3-16 Bees collect honeydew from bugs before spring blossoms arrive
Bees collect honeydew from bugs before spring blossoms arrive
In the absence of nectar, bees get by on the sweet secretions of other insects — but they still need flowers for their protein-laden pollen. When nectar is scarce, bees can tap into another source of sweet stuff: the droppings left behind by other insects. This honeydew, a sugar-rich substance secreted by sap-sucking scale insects, may tide hungry bees over until spring flowers bloom. Although we tend to think of bees as hive-living socialites, most bee species are solitary, with each female building a nest to protect her developing offspring. Adults emerge in the spring and live for just a few weeks, when they mate and gather pollen and nectar. Fragrant, colourful flowers are like neon arrows pointing to those resources. But how wild bees survive if they mature before the blooms do was still largely a mystery, says Joan Meiners at the University of Florida in Gainesville. Unlike colony-building honeybees, solitary bees don’t stockpile honey for times when blossoms are scarce. “There’s really not much that’s known about what bees do when there aren’t flowers,” Meiners says.

Total Page Views

Bees
Tales from the Hive

Sioux Falls Zoologists endorse Bees: Tales from the Hive for showing
us the complex lives of these amazing little creatures.
How the bee colony works and bees work together.